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ABSTRACT
We study a simple model of compressible reacting flow. First, we derive
a dispersion relation for the linearized problem, making a distinction between
frozen and equilibrium sound speed. Second, we study the stability of the Von
Neumann-Richtmyer scheme applied to this model., One finds a natural generali-

zation of the C.,F.L. condition,
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INTRODUCTION

A simple model--one irreversible reaction-—-of compressible reactive flow
is presented in this report., Equations of gas dynamics are augmented by one
equation for the progress variable of the chemical reaction and the appro-
priate equations of state, The resulting set of equations 1is a nonlinear
hyperbolic system with source terms. However, acoustic waves, i.e., small
perturbation of a given constant state, will not be described any more by the
wave equation but by a more general dispersive equation. Only in the so-
called frozen equilibrium limit will the wave equation be recovered with the
appropriate sound speed. Such a classical analysis (see [8],[l] for instance)
is extended to the discrete set of equations obtained by using the Von
Neumann-Richtmyer scheme (see [9]). Such a scheme is known for its simplicity
and its robustness to handle strong shocks. The known stability results (see
[9],[7]) for such a scheme are generalized in our context. Both frozen and
equilibrium limits appear again, and we make a distinction between implicit

and explicit schemes used to discretize the reaction equation.

1. THE DISPERSION RELATION FOR A REACTIVE FLOW

We consider 1-D reactive flows involving a single irreversible chemical
reaction A+ B. The flows will be compressible, viscous, but heat conduc-
tion and chemical diffusion effects are neglected.

Let us introduce the pressure p, the specific volume v, the internal
energy e, the velocity u, and the progress variable A of the reaction
A » B, changing from O for no reaction to 1 for complete reaction. Using

Lagrangian coordinates (a,t), equations of motion are given by:



ERY Jdu
3t 33 0
du _ p _
5t a2 - 0
(1.1)
2
3 u 9 _
a—E(e+T)+'5'5(PU)"0
A _ .
ot *

We recall that (a,t) are related to the Fulerian coordinates (x,t), where
x = x(a,t) gives the position, at time t, of a fluid element that was
initially at position a. We complete the system (l.1) by prescribing p,

the internal energy (per unit mass) e, and the reaction rate r; precisely we

have

(1.2) P=ptw=p-y %% u>0

where pr 1is the artificial viscosity

(1.3)

1
i

= e(p,v,\)

(1.4) r

r(p,v,A).

In (1.1), we rewrite the third equation in a nonconservative form as

de | — OV _
(1.5) st PaE " 0.

Using (1.1),(1.3) and (1.5), we also obtain




(1.6) de ap de 3:

hence a relation between %%. and 3:
de , 7 de
de (3p , 9V v A _
(1.7) 7 (3¢ * 5 5 T T 3e r) = 0.
3ap ap

de
A _ _,9p
(1.8) —_B_e_-_ (ﬁ)e,v°
ap
Next, we set
de -
— P
ge
op
(1.10) 5= .
A'e,v

The first coefficient will be interpreted (see the Appendix below) as the mass
speed of sound; the second one is related to the themicity (see [3]).

Therefore, (1.7) reads

ap —-23V=
(1.11) -a-E-+ a 's—t- Fro

In order to investigate the stability of the solution of (1.1)-(1.4), we shall
"linearize'" the equation for A  around some local equilibrium state

z*¥ = A*(p,v) (see the Appendix). We have



ax _ A% (p,v) - A
(1.12) 5T = T,
where T is a "relaxation time," assumed given. Next, we linearize the

equilibrium state by taking the wundisturbed fluid span--denoted by the

subscript 0--as reference state

(1.13) A*(p,v) . p+A v,

Finally, we obtain for the equation governing A

(<34

(1.14) ALl el v

-

The linearized system associated to (l1.1) is obtained classically by writing
v = VO -+ V’, P = PO + p’, etc., in (1.1),(1.11), and (1.14), where
vo,po,--- is a constant reference state. Neglecting second order terms and

performing the approximation of frozen coefficients, we finally find (dropping

the 7)
v _3u =0
ot da
d9u  dp 9 ,— du
i PO PN P
(1.15)
3p . —2 av _ + 3A
et e P3¢
A 1k L
-5-5- —?()\pp'ﬁkv v X),




— =2 * *
where W, @, by, T, A_ , A are now given constants. An equivalent form

P v
0 0
of (1,15), which is more convenient for our analysis, is

9v _ du =0
ot Ja
3u+3p =8 (—au)
9t Ta %a ¥ 7a
(1.16)
! 9p . —2 du _ = 3\
| T PRI T
|
’ A 1 % *
| ot Po Y0

The dispersion relation associated with (1.16) 1is classically obtained (see

[10] for instance) by representing v, u, p, A in (1.16) as a harmonic

(1.17) v = V0 exp(wt + ika) ..., etc.

Substituting (1.17) into (1.16), we obtain a linear system for V,, Uy, Pg, lj

[wVy=1ik U, =0
U. + ik P - Tl
® %o 0 Lo 0
(1.18) <
_2 _
w PO + a“ ik U0 =% w 1O
\ w1 VR TR S U U
©® 1o T 0 0 o’*



To have a nontrivial solution, the determinant associated with (1,18) should

be =zero, and this gives the dispersion relation, a relation between w

and k. A simple computation gives

— —_— — % —
u)['ru)(m2 +yu kzw + a2 kz) + (1 -b% )\p )(w2 + k2 w) +
0
(1.19)
— — %
@2 - B A" P = o.
v
0
We rearrange this equation as
- -
T a 1 n 2
m[—z——-—-*— w( w + kT + k' w)
a“-ba %2— EZ
(1.20) Yo
- % -
1 -5 )‘p 1-b }‘p
+_.,2_____7€_._0 w2 + k2 +—r———;—0 szw] = 0.
a" -b 2 a" -% A,
Yo 0
Of course the roots w = wlk) of (1.20) characterize the stability of

(1.16) according to the sign of their real parts. In view of the results
given in the Appendix, the coefficients in (1.20) do have a simple interpreta-
tion in terms of the frozen and equilibrium mass sound speed a. and a

f
We refer to the Appendix for the definition; here we just note that

(1.21) 22 > a2




Finally, we rewrite the characteristic equation (1.20) in terms of T, E?,
and 32
e
- 1 u
wlT w(:i-m + k2 + 37 kzw)
a a
(1.23) f f
1 2 . u .27 _
+:7u) + k +:-2-k(.l)]—0.
a a
e e

0f course, as T > » (resp. T + 0), one recovers the limit of the frozen

(resp. equilibrium) flow, Both limits are dispersion relations associated to

du
at ’

coefficient, corresponding to the viscous term in (1.2).

a wave operator perturbed by a damping term A with the appropriate
Due to (1.,21), one can easily check, using Routh-Hurwicz criterium (see

{5] for instance and the next section)

(1.24) Re w(k) < 0,

where w = w(k) is any root of (1.23). Therefore, the solutions of (1.16)

decay with time, i.e., the solutions of (1.1) are linearly stable.

2. VON NEUMANN-RICHTMYER SCHEME FOR REACTIVE FLOWS

Now we investigate the (linear) stability of the Von Neumann-Richtmyer
scheme used to discretize (1.1) or (1.16) and completed by a simple Euler
scheme for the A-equation. Let At,Aa denote the mesh scale in time and

space. For (1l.,1), we have, using standard convention



n+1 n n+1 n+1
j+1 1’+1 u.f u.-z
2 i j+1 i -
At Aa -
1 1 =n =T
hnﬁz _ unaz P.+1 P-_l
k| i o Tz 2 _ 4
At At
(2.1)
n+l n n+l n
1~ %1 1 1
L JUVSTONCINEL S B
At 2p.+_1_ pj4_1_ At
373 P}
An+1 _ An
._'_1 .+1
Iy Ity R
At 1°
i+
15
where rn+? = r(9pn+} + (1-8)p" 1 see), 0<8 <1, Note that we used
j*7 j*f j*f

the energy equation under the form (1.5). Second order accuracy corresponds
to the choice 6 = é .
Such a scheme is now applied to the linearized version of (1.1), that is

(1.16), again using the assumption of frozen coefficients. To avoid

fractional indexes, we make the shift 1+% > i, nﬁé + n+l, etc.

We find




Vn+1 - un+1 n
J j j+l .o
At Aa
n+l n n n n n
u, - u, P, - P . - 2u, + u,
h| j,_3 Rt T £ Wt O
At Aa (Aa)z
(2.2) n+l n n+l n+l n+l n
P, ~ P u, A - A
J J + 5‘2 J+1 J _ :B- J ___J_
At Aa At
An+1 _ An
i * + *
== Ti (A" p™ 4 A, VITE Ly,
Py J o 3 J
where p?+e = 6p§+1 + (1—B)p3, etc., 0<6< 1. To carry out a stability
analysis for the scheme (2.2), we set
(2.3) R R R R
i 0 0
and similar relation for u?, p;, A?- Substituting (2.3) into (2.2), we

find a set of linear equations for Vg, Ug, Py, INE

r-1 eikAa -1
it Vo T TV =0
— -ikAa
-1 4y . 2. Aa 1 -e
EL oy M eink 2V, b — P =
At (At)z 2°°0 Aa 0
(2.4)
ikAa
r-1 —2 e -1 — r-1
At fot @ Aa rly=brr Lo
r-1

0

1 * *
-1, ==(6r + (1-e))(Ax_ P, +A_V_ -1
T p0 v0
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The characteristic equation associated to this system is obtained by computing

its determinant, We find, for B8 = sin2 5%3

r-1 —r-1 1 ,r=1.2 4y 1 r-1 4
At {T At LZ? G = Bt 7 Br]
ag ag (Aa) (A3)
(2.5)
2 4]1 1 r-1 + 4 Br]} = 0’

a a, (Aa) (Aa)

where we used the definition of the frozen and equilibrium mass sound speeds

(see the Appendix) and the definition (1.22) of <.
Equation (2.5) is to compare to its continuous analog (1.23). Of course,

r =1 1is one trivial root. To insure stability, we have to check that the
remaining roots of (2.5) do have modulus smaller or equal than 1., This will

be achieved assuming conditions on At and Aa.

To simplify notations, let us introduce

— At —_ At 2
a=4p iyt B =4 (3, 7208
(Aa)
(2.6)

At\2 E% 2 At
B” =4 ae(KEJ 8 c=(—)"=.

a T

e
r=1 can be rewritten as

Therefore (2.5), up to a factor AT

(r-1) [(e=1)% + ACr-1) + Br]

(2.7)

+C0(r-1) + 1) [(r=1)% + ACr-1) + B°r] = O.
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We are now looking for conditions insuring that the roots r of (2.7)

satisfy |r| < 1. Classically, we perform the transformation r = %;%
(Jr] <1 <= Re z < 0) and apply the Routh-Hurwicz criterium.

(2.7), we deduce
3 .
(2.8) y asz = 0.

The coefficients aj in (2.8) are given by

(2.9) ay = 2(4 - 2A -~ B) + (26 - 1)C(4 - 2A - B7)
(2.10) a, = 4A + 2(20 - 1)AC + C(4 - 2A - B7)
(2.11) a, = 2B + (20 ~ 1)B°C + 2AC

(2.12) ay = B°C.

From

The Routh-Hurwicz criterium insures Re z < 0, for any root 2z of (2.8), as

soon as (see [5})

(2.13) A,y 0g >0
(2.14) a,o, - a0a3_2 0.
By the definitions (2.6) (we recall g = sin2 EAE) and the property (1.21),

- 2

we have
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(2.15) A, B, 3, C> 0 and B> B,

To study (2.13) and (2.14), we discuss according to the sign of 20 - 1

(0 <6 < 1.

i) The case 206 -1 > 0.
Here the scheme for the A-equation is unconditionally stable. In view

of (2.9),(2.10), and (2.15), the condition (2.13) is satisfied as soon as

(2.16) 4 -2A-B>0 and 4 - 2A - B > 0.

Due to (2.6) and (1.21), we finally obtain the sufficient condition

(2.17) (3, %g)z + zi_’é.t_,, < 1.
(ha)® —

Thus, we recover the usual condition of stability for the Von Neumann-
Richtmyer scheme (see [9]) but with the appropriate sound speed. Next, we

look at the condition (2.14), which reads

(4A + 2(20 - 1YAC)Y(2B + (26 - 1)B"C + 2AC)

(2.18)

+ 2aC%(4 - 24 - B") + 2(4 - 24)(B - B)C > O.

Since 206 - 1>0, (2.18) is satisfied as soon as (2.17); hence, (2.16)

holds.

In summary, (2.17) insures (linear) stability for (2.2) if -%_S 8 < 1.




=13~

ii) The case 20 -1 <0,

Here the scheme for the A-equation becomes explicit. Again using (2.6),

we rewrite (2.13) as

(2.19) 2(4 - 24 - B - 4(1 - 28)C) + (1 - 28)C(2A + B") >0

(2.20) 2A(2 - (1 - 26)C) + C(4 - 2A - B7) > 0.

Thus, due to (2.15), (2.19) is satisfied as soon as

(2.21) 4 - 2A - B - 41 - 20)C > O,

With (2.6), we thus obtain the sufficient condition

a;. 2

(2.22) CPRIS L i S 20)(=) =<1
(Aa) ae T

that is the condition (2.17) enforced by an extra term coming from the
explicit scheme used for the A-equation, We remark that this extra term
vanishes in the frozen limit T + + =,

0f course, (2.21) implies (2.16), since B > B°; therefore, (2.20) is

satisfied as soon as

(2.23) 2 - (1 -28)C > 0,

and we find the natural condition



14—

—

a_ 2
(2.24) (=D 1228 4 ¢ 1.
a

2t

It remains to check (2.14), i.e., (2.18), Due to (2.23), it is sufficient to

satisfy
(2.25) 2B - (1 - 26)B°C > O
or
(2.26) 1720 a¢ <1,
21
But, since 5? > 32, (2.26) is a consequence of (2,24).

In summary, (2.22) and (2.24) insure (linear) stability for (2.2), if

0<6 S_é-.

The above results could be easily generalized to similar 2-D reactive
flows discretized by the natural extension of the Von Neumann-Richtmyer scheme
(see [6], for imstance). Similar results are anticipated for the Godunov
scheme, which reduces, after 1linearization, to the Courant-Isaacson-Rees

scheme ({7])., They will be published elsewhere.
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APPENDIX

Here, for the convenience of the reader, we recall some classical results
concerning the definition of the sound speed in reactive flows (see for

instance [3],[8],[1]). Here we take P =p, that is, (see (1.2)); we
suppose gy =p = O,
According to the laws of thermodynamics,

(A.1) TdS = de + pdv = vdi,

where T, S, v are the temperature, the entropy, and the chemical poten-

tial. From (A.1) and (1.3), we deduce

(A.2) Tds = r dp + ( =+ pldv + (._ - v)da.

Now, we consider two cases,

i) The flow is frozen: ds =dx = 0,

Then, (A.2) hecomes

.a_% +p
_ ov
(A.3) ('é—)s e e
op
or
de
+p
ap _ 2%V _ 2
(A.4) P =¥ —5e— = % -
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Therefore, the definition (1.9) of a2 (where P =p) is that of the

frozen mass sound speed pzcg. We shall use the standard notation
2 _ 22
af - p cfc

*
ii) The flow is in chemical equilibrium: dS = 0 and A = X (p,v).

* *
In particular v =0 and dx = gz dp + gi dv in (A.2); collecting
terms we find
*
de +p oA de
(A.5) GDs ot (poey =~ R
P 3e , 3\ 3de
3 P 9
1 ap
But ( )S A= A —7-(5—08 A= and thus we find the equilibrium sound
speed
*
E + P ___3)\ a_e_
(A.6) i LA N
’ 3e LA de
ap ap 9
The equilibrium mass sound speed 1is then az H pzcz, and we easily check
(see (1,20),(1.8),(1,10)) that
_ - %
2 _ b Av
(A.7) *—'—.:—*—0 = 32-
1-% 2 ©
P

Similarly, we find (see (1.20)) that




(A.8)

Finally,

(A.9)
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de
—_ —_
a2 - v p
= * %
az-— bxo de + + 3\ 3de
WP T EX

in view of (A.4) and (A.6), we have

2 2
ag Z a_.
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